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Abstract. We present the results for the structure function FL for a gluon target having a non-zero trans-
verse momentum square at order αs. The results of a double convolution (with respect to the Bjorken
variable x and the transverse momentum) of the perturbative part and the unintegrated gluon densities
are compared with recent experimental data for FL at low x values and with the predictions of other
approaches.

1 Introduction

The basic information on the internal structure of nucleons
is extracted from the process of deep inelastic (lepton–
hadron) scattering (DIS). Its differential cross section has
the form

d2σ

dxdy
=

2πα2
em

xQ4

× [(
1 − y + y2/2

)
F2(x, Q2) − (y2/2

)
FL(x, Q2)

]
,

where F2(x, Q2) and FL(x, Q2) are the transverse and lon-
gitudinal structure functions (SF), respectively, qµ and
pµ are the photon and the hadron 4-momenta, and x =
Q2/(2pq) with Q2 = −q2 > 0.

The longitudinal SF FL(x, Q2) is a very sensitive QCD
characteristic, because it is equal to zero in the parton
model with spin−1/2 partons. Unfortunately, essentially
at small values of x, experimental extraction of FL data
requires rather a cumbersome procedure (see [1, 2], for ex-
ample). Moreover, the perturbative QCD leads to some
controversial results in the case of SF FL. The next-to-
leading order (NLO) corrections to the longitudinal coef-
ficient function, which are large and negative at small x [3,
4], need a resummation procedure1 which leads to a cou-
pling constant scale essentially higher than Q2 [4, 6, 7]2.

Recently, there have become available important new
data [13–18] on the longitudinal SF FL which probed the

1 Without a resummation the NLO approximation of the SF
FL can be negative at low x and quite low Q2 values (see [4, 5])

2 Note that at low x a similar property has also been observed
in the approaches of [8–10] (see the recent review in [11] and
discussions therein) which is based on Balitsky–Fadin–Kuraev–
Lipatov (BFKL) dynamics [12], where the leading ln(1/x) con-
tributions are summed

small-x region down to x ∼ 10−2. Moreover, at small x
the SF FL can be related to the SF F2 and the deriva-
tive dF2/d ln(Q2) (see [19–21]). In this way, most precise
predictions based on data for F2 and dF2/d ln(Q2) (see
[15] and references therein) can be obtained for FL. These
predictions can be considered as indirect “experimental
data” for FL.

In this paper, for the analysis of the above data we use
the so-called kT-factorization approach [22–24] based on
the BFKL dynamics [12] (see also the recent review of [11]
and the references therein). In the framework of the kT-
factorization approach, the longitudinal SF FL has first
been studied in [25], where the small x asymptotics of FL
has been evaluated using the BFKL results for the Mellin
transform of the unintegrated gluon distribution and the
longitudinal Wilson coefficient functions have been calcu-
lated analytically for the full perturbative series at asymp-
totically small x values. Since we want to analyze FL data
in a broader range at small x, we use the parameterizations
of the unintegrated gluon distribution function Φg(x, k2

⊥)
(see Sect. 3).

The unintegrated gluon distribution Φg(x, k2
⊥) (fg is

the (integrated) gluon distribution in the proton multi-
plied by x and k⊥ is the transverse part of the gluon 4-
momentum kµ), with

fg(x, Q2) =
∫ Q2

dk2
⊥Φg(x, k2

⊥) (1)

(hereafter k2 = −k2
⊥), is the basic dynamic quantity in the

kT-factorization approach3. It satisfies the BFKL equa-
tion [12].

3 In our previous analysis [26] we have shown that the prop-
erty k2 = −k2

⊥ leads to the equality of the Bjorken x value in
the standard renormalization-group approach and in the Su-
dakov one
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Fig. 1a,b. The diagrams contributing to Tµν for a gluon tar-
get. They should be multiplied by a factor of 2 because of the
opposite direction of the fermion loop. The diagram in a should
be also doubled because of crossing symmetry

Notice that the integral is divergent at the lower limit
(at least, for some parameterizations of Φg(x, k2

⊥)) and
so it leads to the necessity to consider the difference fg(x,
Q2)−fg(x, Q2

0) with some non-zero Q2
0 (see the discussions

in [26]), i.e.

fg(x, Q2) = fg(x, Q2
0) +

∫ Q2

Q2
0

dk2
⊥Φg(x, k2

⊥). (2)

Then in the kT-factorization the SFs F2,L(x, Q2) are
driven at small x primarily by gluons and are related in the
following way to the unintegrated distribution Φg(x, k2

⊥):

F2,L(x, Q2) =
∫ 1

x

dz

z

∫
dk2

⊥
∑

i=u,d,s,c

e2
i

·Ĉg
2,L(x/z, Q2, m2

i , k
2
⊥)Φg(z, k2

⊥), (3)

where e2
i are the charges squared of the active quarks.

The functions Ĉg
2,L(x, Q2, m2

i , k
2
⊥) can be regarded as

the SF of the off-shell gluons with virtuality k2
⊥ (here-

after we call these hard structure functions4). They are
described by the sum of the quark box (and crossed box)
diagram contribution to the photon–gluon interaction (see
Fig. 1).

The purpose of this paper is to give predictions for the
longitudinal SF FL(x, Q2) based on the calculations of the
hard SFs Ĉg

2,L(x, Q2, m2, k2
⊥), given in our previous study

[26], and several parameterizations of the unintegrated
gluon distributions (see [11] and references therein).

It is instructive to note that the diagrams shown in
Fig. 1 are similar to those of the photon–photon scattering
process. The corresponding QED contributions have been
calculated many years ago in [27] (see also the beautiful
review in [28]). Our results have been calculated indepen-
dently and they are in full agreement with [27]. Moreover,
our results are in agreement with the corresponding in-
tegral representations for Ĉg

2,L, given in [22, 25] and nu-
merically with the results of [29]. However, we hope that
our formulae, which are given in a simpler form, could be

4 By analogy with similar relations between cross-sections
and hard the cross-sections

useful for others. This simpler form for the hard SFs Ĉg
2,L

comes from using the relation between the results based
on nonsense, transverse and longitudinal gluon polariza-
tions (see (13) below) observed in [26] for gauge-invariant
sets of diagrams.

The structure of this paper is as follows: in Sect. 2 we
present the basic formulae of our approach. Section 3 con-
tains the relations between the SFs FL and F2 and the
derivative dF2/d lnQ2, obtained in [19–21] in the frame-
work of the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) approach [30] (i.e., in the collinear approxima-
tion: k2

⊥ = 0). In Sect. 4 we give the predictions for the
structure function FL for three cases of unintegrated gluon
distributions.

2 Basic formulae

To begin with, we shortly review the results of [26] needed
below in our investigations.

The hadron part of the DIS spin-average lepton–hadron
cross section can be represented in the form5

Fµν = eµν(q) FL(x, Q2) + dµν(q, p)F2(x, Q2), (4)

where

eµν(q) = gµν − qµqν

q2

and

dµν(q, p) = −
[
gµν + 2x

(pµqν + pνqµ)
q2 + pµpν

4x2

q2

]
.

2.1 Feynman-gauge gluon polarization

As it has been shown in [26], it is very convenient to con-
sider, as a first approximation, gluons having polarization
tensor (hereafter the indices α and β are connected with
gluons and µ and ν are connected with photons)6:

P̂αβ = −gαβ . (5)

The tensor corresponds to the standard choice of the po-
larization matrix in the framework of the collinear approx-
imation. In a sense the case of polarization is equal to the
standard DIS suggestions for the parton properties, ex-
cept for their off-shell property. The polarization (5) gives
the main contribution to the polarization tensor we are
interested in (see below):

P̂αβ
BFKL =

kα
⊥kβ

⊥
k2

⊥
, (6)

5 Hereafter, we consider only the one-photon exchange ap-
proximation

6 In principle, we can use here more general cases of the
polarization tensor (for example, one is based on the Landau
or unitary gauge). The difference between them and (5) is ∼ kα

and/or ∼ kβ and, hence, it leads to zero contributions because
the Feynman diagrams on Fig. 1 are gauge invariant
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which comes from the high energy (or kT)-factorization
prescription [22–24]7.

Contracting the photon projectors (connected with the
photon indices of the diagrams on Fig. 1)

P̂ (1)
µν = −1

2
gµν and P̂ (2)

µν = 4z2 kµkν

Q2

(here z = Q2/(2kq) is the corresponding Bjorken variable
at the parton level), with the parton tensor F p

µν

F p
µν = eµν(q) F p

L(z, Q2) + dµν(q, k)F p
2 (z, Q2), (7)

we obtain at the parton level (i.e. for off-shell gluons hav-
ing momentum kµ) when Ĉg

2,L(z) ∼ F p
2,L(z, Q2)8

β̃2 · Ĉ
g,(1)
2 (x) = K ·

[
f (1) +

3
2β̃2

· f (2)
]

, (8)

β̃2 · Ĉ
g,(1)
L (x) = K ·

[
4bx2f (1) +

(1 + 2bx2)
β̃2

· f (2)
]

= K · f (2) + 4bx2β̃2 · Ĉ
g,(1)
2 , (9)

where the normalization factor is K = as(Q2) · x,

P̂ (i)
µν Fµν = K · f (i), i = 1, 2,

and as(Q2) = αs(Q2)/(4π), β̃2 = 1− 4bx2, b = −k2/Q2 ≡
k2

⊥/Q2 > 0, a = m2/Q2.
Applying the projectors P̂

(i)
µν to the Feynman diagrams

displayed in Fig. 1, we obtain the following results:

f (1) = −2β
[
1

− (1 − 2x(1 + b − 2a) · [1 − x(1 + b + 2a)]) · f1

+ (2a − b)(1 − 2a)x2 · f2

]
, (10)

f (2) = 8x · β
[
(1 − (1 + b)x)

− 2x(bx(1 − (1 + b)x)(1 + b − 2a) + aβ̃2) · f1

+ bx2(1 − (1 + b)x)(2a − b) · f2

]
, (11)

where

β2 = 1 − 4ax

(1 − (1 + b)x)
(12)

and

f1 =
1

β̃β
· ln

1 + ββ̃

1 − ββ̃
, f2 = − 4

1 − β2β̃2
.

7 We would like to note that the BFKL-like polarization ten-
sor (6) is a particular case of the so-called nonsense polarization
of particles in the t-channel. The nonsense polarization makes
the main contributions to the cross sections in the s-channel as
s → ∞ (see, for example, [31] and references therein). The limit
s → ∞ corresponds to small values of the Bjorken variable x,
which is just the range of our study

8 The hard SFs Ĉg
2,L do not depend on the type of target, so

we can replace z → x below

2.2 BFKL-like gluon polarization

Now we take into account the BFKL-like gluon polariza-
tion (6). As we have shown in [26], the projector P̂αβ

BFKL
can be represented as

P̂αβ
BFKL = −1

2
1
β̃4

[
β̃2gαβ − 12bx2 qαqβ

Q2

]
. (13)

In the previous subsection we have already presented
the contributions to the hard SF using the first term in
the brackets of the r.h.s. of (13). Repeating the above
calculations with the projector ∼ qαqβ , we obtain the total
contributions to the hard SF which can be represented as
the following shift of the results in (8)–(11):

Ĉ
g,(1)
2 (x) → Ĉg

2 (x), Ĉ
g,(1)
L (x) → Ĉg

L(x);

f (1) → f
(1)
BFKL =

1
β̃4

[
β̃2f (1) − 3bx2f̃ (1)

]

f (2) → f
(2)
BFKL =

1
β̃4

[
β̃2f (2) − 3bx2f̃ (2)

]
, (14)

where

f̃ (1) = −β

[
1 − x(1 + b)

x

− 2(x(1 − x(1 + b))(1 + b − 2a) + aβ̃2) · f1

− x(1 − x(1 + b))(1 − 2a) · f2

]
, (15)

f̃ (2) = 4 · β(1 (16)
− (1 + b)x)2[2 − (1 + 2bx2) · f1 − bx2 · f2].

Notice that the general formulae are needed only to
evaluate the charm contribution to the structure functions
F2 and FL, i.e. F c

2 and F c
L. To evaluate the corresponding

light quark contributions, i.e. F l
L, we can use the m2 = 0

limit of the above formulae.

2.3 The case m2 = 0

When m2 = 0, the hard SFs Ĉg
k(x) are defined by f (1),

f (2), f̃ (1) and f̃ (2) (as in (8), (9) and (14)) which can be
represented as

f (1) = −2
[
2

− (1 − 2x(1 + b) + 2x2(1 + b)2) · L(β̃)
]
, (17)

f (2) = 8x(1 + b)(1 − (1 + b)x)
[
1 − 2bx2 · L(β̃)

]
, (18)

f̃ (1) = − (1 + b)(1 − x(1 + b))
bx

[1 − 2bx2 · L(β̃)]

= − 1
8bx2 f (2), (19)

f̃ (2) = 4(1 − x(1 + b))2[3 − (1 + 2bx2) · L(β̃)], (20)
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and, thus, (see (14))

β̃4 · f
(1)
BFKL = (−2) (1 − x(1 + b))

×
[
2
(

1 − 2x(1 + b) +
x2(1 − b)2

1 − x(1 + b)

)
− (

1 − x(1 + b) − 4x3b(1 + b)

+
x2(1 − b)2

1 − x(1 + b)

)
· L(β̃)

]
, (21)

β̃4 · f
(2)
BFKL = 8x(1 − x(1 + b))

×
[
1 + b − 18bx(1 − x(1 + b))

+ 2bx (3 − 4x(1 + b)

+ 6bx2(1 − x(1 + b))
) · L(β̃)

]
, (22)

where

L(β̃) =
1
β̃

· ln
1 + β̃

1 − β̃
.

3 Relations between FL, F2

and the derivative of F2 in the case
of the collinear approximation

More additional information about the SF FL can be ob-
tained in the collinear approximation (i.e. when k2

⊥ = 0)
in the following way.

In the framework of perturbative QCD, there is a pos-
sibility of connecting FL with F2 and with its derivative
dF2/d lnQ2 due to the fact that at small x the DIS struc-
ture functions depend only on two independent functions:
the gluon distribution and the singlet quark one (the non-
singlet quark density is negligible at small x), which in
turn can be expressed in terms of the measurable SF F2
and its derivative dF2/d lnQ2.

In this way, by analogy with the case of the gluon
distribution function (see [32, 33] and references therein),
the behavior of FL(x, Q2) has been studied in [19–21], us-
ing the HERA data of [34, 35] and the method of [36]9
consisting of the replacement of the Mellin convolution
by ordinary products. Thus, the small x behavior of the
SF FL(x, Q2) can be extracted directly from the mea-
sured values of F2(x, Q2) and its derivative without a
cumbersome procedure (see [1, 2]). These extracted val-
ues of FL may be well considered as new small x “ex-
perimental data” of FL. The relations can be violated
by non-perturbative corrections like higher-twist ones [38,
39], which can be large exactly in the case of the SF FL
[25, 40].

Since the kT-factorization approach is one of the pop-
ular perturbative approaches used at small x, it is very
useful to compare its predictions with the results of [19–
21] based on the relations between the SFs FL(x, Q2),

9 This method is based on previous investigations [1, 37]

F2(x, Q2) and dF2(x, Q2)/d lnQ2. It is the main purpose
of this study.

The kT-factorization approach is closely related to the
Regge-like behavior of the parton distributions. So we re-
strict our investigations to the SF and parton distributions
in the following form (hereafter a = q, g):

fa(x, Q2) ∼ F2(x, Q2) ∼ x−δ(Q2). (23)

Note that really the slopes of the sea quark and gluon
distributions δq and δg, respectively, and the slope δF2 of
the SF F2 are somewhat different. The slopes have the
familiar property δq < δF2 < δg (see [41–46] and refer-
ences therein). We will neglect, however, this difference
and use in our investigations the experimental values of
δ(Q2) ≡ δF2(Q2) extracted by the H1 Collaboration10

(see [41] and references therein). We note that the Q2-
dependence is in very good agreement with perturbative
QCD at Q2 ≥ 2 GeV2 [48]. Moreover, the values of the
slope δ(Q2) are in agreement with recent phenomenologi-
cal studies (see, for example, [8]) incorporating the next-
to-leading corrections [49] (see also [50]) in the framework
of the BFKL approach.

Thus, assuming the Regge-like behavior (23) for the
gluon distribution and F2(x, Q2) at x−δ � 1 and using
the NLO approximation for the collinear coefficient func-
tions and the anomalous dimensions of the Wilson oper-
ators, the following results for FL(x, Q2) have been ob-
tained in [20]:

FL(x, Q2) = −2
Bg,1+δ

L (1 + as(Q2)R
g,1+δ

L )

γ
(0),1+δ
qg + γ

(1),1+δ
qg as(Q2)

ξδ

×
[

dF2(xξ, Q2)
d lnQ2

+
as(Q2)

2

(
Bq,1+δ

L

Bg,1+δ
L

γ(0),1+δ
qg − γ(0),1+δ

qq

)
F2(xξ, Q2)

]

+ O(a2
s , x

2−δ, αx1−δ), (24)

where

γ(1),η
qg = γ(1),η

qg + Bq,η
2 γ(0),η

qg + Bg,η
2 (2β0 + γ(0),η

gg − γ(0),η
qq ),

R
g,η

L = Rg,η
L − Bg,η

2
Bq,η

L

Bg,η
L

.

Here γ
(1),η
qa and R

a,η

L (a = q, g) are the combinations11
of the “anomalous dimensions” of the Wilson operators

10 Now the preliminary ZEUS data for the slope d ln F2/
d ln(1/x) are available as some points on Figs. 8 and 9 in [47].
Moreover, the new preliminary H1 points have been presented
at the Workshop DIS2002 [17]. Both new points show quite
similar properties to compare with the H1 data [41]. Unfortu-
nately, the tables of the ZEUS data and the new H1 data are
unavailable yet, so the points cannot be used here
11 Because we consider here F2(x, Q2) but not the singlet
quark distribution in the corresponding DGLAP equations [30]
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γη
qa = asγ

(0),η
qa + a2

sγ
(1),η
qa + O(a3

s ) and the “Wilson coef-
ficients” asB

a,η
L (1 + asR

a,η
L ) + O(a3

s ) and asB
a,η
2 + O(a2

s )
with the “moment” argument η (i.e., the combinations of
the functions which can be obtained by analytical con-
tinuation of the corresponding anomalous dimensions and
coefficient functions from integer values n of their argu-
ment to non-integer ones η).

Note that, in principle, any term like ∼ 1/(n + m)
(m = 0, 1, 2, . . .) which adds to the corresponding combi-
nations of the anomalous dimensions and coefficient func-
tions: γ

(1),n
qa and R

a,n

L , should contribute to (24) in the
following form (after replacement of Mellin convolutions
by usual products in the DGLAP equations (see [36])):

1
1 + δ + m

(
1 +

Γ (2 + δ + m)Γ (1 + ν)
Γ (2 + δ + m + 1 + ν)

· x1+δ+m

)
, (25)

where the value of ν comes [51–53] from the asymptotics
of the parton distributions fa(x) as x → 1: fa ∼ (1−x)νa ,
and12 ν ≈ 4 from the quark counting rules [54]. The ad-
ditional term ∼ x1+δ+m in (25) is important only for the
m = −1 case (i.e. for the singular parts ∼ 1/(n−1) of the
corresponding anomalous dimensions and coefficient func-
tions) and quite small values of δ (i.e., for xδ ∼ Const).

Thus, except for the case when m = −1 and xδ ∼
Const, we can replace (25) by its first term 1/(1+ δ +m),
i.e., our variables γ

(1),η
qg and R

g,η

L are just the combinations
of the corresponding anomalous dimensions and coefficient
functions at n = 1 + δ. When m = −1 and xδ ∼ Const in
the small x range considered here, we should replace the
term 1/(n − 1), if any existed in the variables γ

(1),n
qa and

R
a,n

L (a = q, g), by the following term:

1
δ̃

=
1
δ

[
1 − Γ (1 − δ)Γ (1 + ν)

Γ (1 − δ + ν)
xδ

]
. (26)

Note also that 1/δ̃ coincides approximately with 1/δ
when δ �= 0 and x → 0. However, as δ → 0, the value of
1/δ̃ is not singular:

1
δ̃

→ ln
(

1
x

)
− [Ψ(1 + ν) − Ψ(1)]. (27)

Thus, (24) together with the well-known expressions of
the anomalous dimensions γ

(0),n
ab and γ

(1),n
ab (a, b = q, g),

and the coefficient functions Ba,n
2 and Ra,n

L (a = q, g) (see
[55–57], respectively, and references therein) gives a pos-
sibility to extract the SF FL at small x values. The calcu-
lations are based on precise experimental data of the SF F2
and its derivatives dF2/d ln(Q2) and δ ≡ d lnF2/d ln(1/x).

For concrete δ values, (24) simplifies essentially (see
[20]). For example, for δ = 0.3 we obtain (for the number
of active quarks f = 4 and the MS scheme):

FL(x, Q2) =
0.84

1 + 59.3as(Q2)

12 In our formula (24) we are mostly interested in gluons, so
we can apply ν = νg ≈ 4 below

×
[
dF2(0.48x, Q2)

d lnQ2 + 3.59as(Q2)F2(0.48x, Q2)
]

+ O(a2
s , x

2−δ, asx
1−δ). (28)

At arbitrary δ values, in real applications it is very
useful to simplify (24) as follows. We keep the exact δ-
dependence only for the leading order terms, which are
very simple. In the NLO corrections we extract the terms
∼ 1/δ̃ which change strongly when 0 ≤ δ ≤ 1, and param-
eterize the remaining terms in the form: ai+biδ+ciδ

2. The
coefficients ai, bi, ci are fixed from the agreement of these
parameterizations with the exact values of γ

(1),η
qa and R

a,η

L
at δ = 0, 0.3 and 0.5. These exact values can be found in
[20, 21, 33].

Then the approximate representation of (24) for arbi-
trary δ value has the form

FL(x, Q2) =
r(1 + δ)(ξ(δ))δ(

1 + 30as(Q2)
[
1/δ̃ − 116

45
ρ1(δ)

])

×
[
dF2(x ξ(δ), Q2)

d lnQ2 +
8
3
ρ2(δ)as(Q2)F2(x ξ(δ), Q2)

]
+ O(a2

s , asx, x2), (29)

where

r(δ) =
4δ

2 + δ + δ2 , ξ(δ) =
r(δ)

r(1 + δ)
, (30)

ρ1(δ) = 1 + δ + δ2/4, ρ2(δ) = 1 − 2.39δ + 2.69δ2.

4 Comparison with the FL experimental data

With the help of the results obtained in the previous
section we have analyzed the experimental data for the
SF FL

13 from the H1 [13, 18], NMC [58], CCFR [59, 60],
BCDMS [61] Collaborations14. Note that we do not cor-
rect the CCFR data [59, 60] which have been obtained in
the νN processes because the terms ∼ x · m2

c/Q2, which
are different in the µN and the νN processes, are not so
strong at low x.

We calculate the SF FL as a sum of two types of con-
tributions: the charm quark one F c

L and the light quark
one F l

L:

FL = F l
L + F c

L. (31)

We use the expression (3) for the calculation of both the
SF F l

L and F c
L in the following form (here ac = m2

c/Q2):

F l
L(x, Q2)

13 Sometimes there are experimental data for the ratio R =
σL/σT which can be recalculated for the SF FL because FL =
F2R/(1 + R)
14 We do not use the experimental data of R from the SLAC
[62, 63], EM [64] and CDHSW [65] Collaborations because they
are obtained at quite large x values
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Fig. 2. The structure function FL(x,
Q2) as a function of x for different val-
ues of Q2 compared to the experimen-
tal data. The H1 data are as follows:
the first 1997 ones [13], new 2001 ones
[15] and preliminary ones [18] are shown
as black triangles, circles and squares,
respectively. The data of the NM [58],
CCFR [60] and BCDMS [61] Collabora-
tions are shown as white triangles, circles
and squares, respectively. Curves 1, 2, 3
and 4 correspond to the SF obtained in
the perturbative QCD with the GRV [43]
quark and gluon densities at the LO ap-
proximation and to the SF obtained in
the kT-factorization approach with the
JB (at Q2

0 = 4 GeV2) [68], KMS [72] and
GBW [69] parameterizations for the un-
integrated gluon distribution

=
∑

f=uds

e2
f

[∫ 1

x

dz

z
Ĉg

L

(x

z
, Q2, 0

)
zfg(z, Q2

0)

+
2∑

i=1

∫ z(i)
max

z
(i)
min

dz

z

∫ k
2(i)
⊥max

k
2(i)
⊥min

dk2
⊥Ĉg

L

(x

z
, Q2, k2

⊥
)

× Φ(z, k2
⊥, Q2

0)
]
, (32)

F c
L(x, Q2)

= e2
c

[∫ 1

x(1+4ac)

dz

z
Ĉg

L

(x

z
, m2

c , Q
2, 0
)

zfg(z, Q2
0)

+
2∑

i=1

∫ z(i)
max

z
(i)
min

dz

z

∫ k
2(i)
⊥max

k
2(i)
⊥min

dk2
⊥Ĉg

L

(x

z
, m2

c , Q
2, k2

⊥
)

× Φ(z, k2
⊥, Q2

0)
]
, (33)

where Ĉg
L(xB , Q2, m2

c , k
2
⊥) are given by (9) and (14).

The integration limits in expression (33) have the fol-
lowing values:

z
(1)
min = x

(
1 + 4ac +

Q2
0

Q2

)
, z(1)

max = 2x(1 + 2ac);

k
2(1)
⊥min = Q2

0, k
2(1)
⊥max =

( z

x
− (1 + 4ac)

)
Q2;

z
(2)
min = 2x(1 + 2ac), z(2)

max = 1;

k
2(2)
⊥min = Q2

0, k
2(2)
⊥max = Q2. (34)

The ranges of integration correspond to positive values
of the square roots in expressions (10), (11), (15) and (16)
and should also obey the kinematic restriction (z ≤ (1 +
4ac + b)−1) following from the condition β2 ≥ 0 (see (10)–
(12)). In (32) the ranges (34) are used at ac = 0.

In Fig. 2 we show the SF FL as a function of x for
different values of Q2 in comparison with the H1 experi-
mental data sets: the old one of [13] (black triangles), the
last year’s one of [15] (black squares) and the new prelim-
inary one of [18] (black circles), and also with NMC [58]
(white triangles), CCFR [59] (white circles) and BCDMS
[61] data (white squares). For comparison with these data
we present the results of the calculation with three dif-
ferent parameterizations for the unintegrated gluon dis-
tribution Φ(x, k2

⊥, Q2
0) at Q2

0 = 4 GeV2. All of them, the
Kwiecinski–Martin–Stasto (KMS) one [72], the Blumlein
(JB) one [68], and the Golec-Biernat and Wusthoff (GBW)
one [72], have already been used in our previous work [26]
and reviewed there.

There are several other popular parameterizations (see,
for example, those of Kimber–Martin–Ryskin (KMR) [70]
and Jung–Salam (JS) [71]), which are not used in our
study mostly because of technical difficulties. Note that
all the above parameterizations give quite similar results
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Fig. 3. The structure function FL(x, Q2)
as a function of x for different values of
Q2. To compare with Fig. 2 “experimental
data” (see [19–21] and Sect. 3) are added
as black stars. The “experimental data”
values depend mostly on the derivative
dF2(x, Q2)/dln Q2, which data are known
at a little bit different Q2 values (see
[15]). So, the “experimental data” obtained
at 12, 15, 20, 25 and 35 GeV2 are pre-
sented here at 13.4, 15.3, 22.4, 29.6 and
39.7 GeV2, respectively

except, perhaps, for the contributions from the small k2
⊥

range: k2
⊥ ≤ 1 GeV2 (see [11] and references therein). As

we use Q2
0 = 4 GeV2 in the study of the SF FL, our re-

sults depend very slightly on the small k2
⊥ range of the

parameterizations. In the case of the JB, GBW and KMS
sets this observation is supported below by our results and
we expect that the application of the KMR and JS sets
should not strongly change our results.

The differences observed between the curves 2, 3 and 4
are due to the different behavior of the unintegrated gluon
distribution as a function of x and k⊥. We can see that the
SF FL results obtained in the kT-factorization approach
with the KMS and JB parameterizations are close to each
other15 and higher than the ones obtained in the pure per-
turbative QCD with the GRV quark and gluon densities in
the leading order (LO) approximation. Otherwise, the FL
results based on the kT-factorization approach with the
GBW parameterization are quite close to the pure QCD
predictions16: such is, indeed, the case because the GBW
model has deviations from the gluon part of perturbative
QCD only at quite low Q2 values. We note that a greater
part of the difference between the predictions of the pure
15 Note that very similar results have also been obtained for
Ryskin–Shabelsky parameterization [72] (see also [73])
16 This fact is also evident from quite the large value of Q2

0 =
4 GeV2 chosen here

QCD and the GRW model comes from contributions of
the quark densities, which are absent in the GRW model.
These quark contributions are responsible for the inter-
mediate place of the curves corresponding to pure QCD
predictions: they lie between the curves corresponding to
the GRW model and the KMS and/or JB ones.

Thus, the predictions of perturbative QCD and the
ones based on the kT-factorization approach are in agree-
ment with each other and with all data within the modern
experimental uncertainties. So, the possible high values of
high-twist corrections to the SF FL predicted in [40] can
be important only at low Q2 values: Q2 ≤ Q2

0 = 4 GeV2.
Figure 3 is similar to Fig. 2 with one exception: we add

the “experimental data” obtained using the relation be-
tween the SF FL(x, Q2), F2(x, Q2) and dF2(x, Q2)/dlnQ2

(see Sect, 3) as black stars. Since the corresponding data
for the SF F2(x, Q2) and dF2(x, Q2)/dlnQ2 are essentially
more precise (see [15]) to compare with the preliminary
data [18] for FL, the “experimental data” have strongly
suppressed uncertainties. As is shown in Fig. 3, there is a
very good agreement between the new preliminary data
[18], the “experimental data” and predictions of pertur-
bative QCD and the kT-factorization approach.

To estimate the value of the charm mass effect, we re-
calculate the SF F c

L also in the massless approximation
similar to (32). In Fig. 4, we show the importance of the
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Fig. 4. The ratio F c
L(x, Q2)/FL(x, Q2) as

a function of x for different values of Q2.
Curves 1, 2, 3 and 4 correspond to the
ratio obtained in the perturbative QCD
with the GRV [43] quark and gluon den-
sities at the LO approximation and to the
SF obtained in the kT-factorization ap-
proach with the JB (at Q2

0 = 4 GeV2)
[68], KMS [72] and GBW [69] parameter-
izations for the unintegrated gluon distri-
bution

exact mc-dependence in the hard SF of F c
L to be com-

pared with its massless approximation where we should
have F c

L(mc = 0)/FL(mc = 0) = 2/5. As one can see in
Fig. 4, the ratio F c

L/FL goes to the massless limit 2/5 only
at asymptotically large Q2 values.

5 Conclusions

In the framework of the kT-factorization approach we have
applied the results of the calculation of the perturbative
parts for the structure functions FL and F c

L for a gluon tar-
get having a non-zero momentum squared, in the process
of photon–gluon fusion, to the analysis of the present data
for the structure function FL

17. The analysis has been per-
formed with several parameterizations of the unintegrated
gluon distributions, for comparison. We have found a good
agreement between all existing experimental data, the pre-
dictions for FL obtained from the relation between the
SF FL(x, Q2), F2(x, Q2) and dF2(x, Q2)/d lnQ2, and the
results obtained in the framework of perturbative QCD
and the ones based on the kT-factorization approach with
the three different parameterizations of the unintegrated
gluon distributions.
17 In [26], we have also obtained quite a large contribution of
the SF F c

L at low x and high Q2 (Q2 ≥ 30 GeV2)

We note that we use the leading order of the kT-
factorization approach. As has been noted in [11], the kT-
factorization includes (at least some of the) NLO correc-
tions of the collinear approach. So, the good agreement ob-
served above between kT-factorization contributions and
the LO and NLO predictions based on the relation be-
tween the SFs FL(x, Q2), F2(x, Q2) and dF2(x, Q2)/
d lnQ2 is no surprise.

As we know, there are already investigations to extend
the kT-factorization approach beyond the LO approxima-
tion. However, the subject of the investigations is essen-
tially the one above in our formalism, and a review of
these studies can be found in [11].

We note that it could also be very useful to evaluate the
SF F2 itself18 and the derivatives of F2 with respect to the
logarithms of 1/x and Q2 with our expressions using the
unintegrated gluons. We are considering to present this
work and also the predictions for the ratio R = σL/σT in
a forthcoming article.

The consideration of the SF F2 in the framework of the
leading-twist approximation of perturbative QCD (i.e. for
“pure” perturbative QCD) leads to a very good agreement
(see [45] and references therein) with the HERA data at

18 A study of the SF F2 in the framework of the kT-factor-
ization has already been carried out in [74]
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low x and Q2 ≥ 1.5 GeV2. The agreement improves at
lower Q2 when higher-twist terms are taken into account
[38, 39]. It has been studied in [38, 45] that the SF F2 at
low Q2 is sensitive to the small-x behavior of the quark
distributions. Thus, our future analysis of F2 in a broad Q2

range in the framework of the kT-factorization approach
should require the incorporation of the parameterizations
of the unintegrated quark densities introduced recently
(see [11, 70] and references therein).
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